

June 25, 2007

- Orbiter Crew Compartment Integration (CCI)
 - Analytical Integration Planning the Orbiter CC configuration for ascent, on-orbit ops, and return
 - Stowage
 - Payload/GFE/FCE/CFE Hardware installations
 - Crew Compartment Configuration Drawing
 - MIP, Interface Control Annex-Manifest (NSTS 21000-IDD-MDK interfaces)
 - Plug-in-Plan and Cable routing (Photo/TV-Laptops-Power)
 - Crew Compartment Avionics Interface Tool (CCAIT)

- Orbiter Crew Compartment Integration (CCI)-Stowage
 - Implementation of SSP and ISSP manifest requirements within Orbiter SSP constraints/capabilities.
 - Configuration drivers:
 - Changes in Space Shuttle Mission-Deployable Satellites, Spacelab science, SpaceHab, MIR/ISS (transfers and crew rotation), and HST repairs
 - Differences in Orbiters
 - Technology evolution of Orbiters and hardware-Laptops, Photo/TV, ACES
 - Satisfy engineering requirements for SSP/ISSP hardware installations/stowage
 - On-orbit Shuttle/Crew operations-Habitability
 - Transfer operations between Orbiter and MIR/ISS
 - Ferry Flight configurations for landings at alternate sites
 - What works
 - The Crew Compartment Integration process including pre-pack physical integration in Houston to installation in Orbiter at KSC.
 - Excellent communication and team work.
 - CCI team has responsibility and control per NSTS 07700 vol. IV, Bk1 and CoFR NSTS 08117.
 - Orbiter mass property envelopes allow analytical integration without unique analysis- "stay in the box" go fly.

- Orbiter Crew Compartment Integration (CCI)-Stowage
 - Available Orbiter volume:
 - 127.5 Middeck Locker Equivalents (MLE) (OV-104/OV-105, OV-103 125.5)
 - Orbiter volumes, Middeck lockers, stowage bags.
 - Actual stowage volume available dependent on mission requirements-Shuttle forward CG or Ascent Performance Margins
 - Requirements:
 - Core set of hardware for 5 CM/ 7Days- food, clothing, Hygiene, LiOH, IFM tools, Laptop computers, Photo/TV, navigation aids, EMUs, EVA tools
 - Above Core mission requirements
 - Rendezvous and docking- Range finders, Binoculars, Centerline Camera
 - Addition GFE hardware requirements/evolution of technology
 - Payload requirements (ISS MKD/HST)

- Orbiter Crew Compartment Integration (CCI)-Stowage
 - Orbiter Stowage (typical mass constraint= 30#/ft³):
 - Under floor: LiOH Box, Vol. H (EVA hardware), Vol. F (wet trash),
 Vol. G (contingency Hygiene hardware), Vol. D (mission specific)
 - Volume 3 B (ET tank photography)
 - Light Weight Middeck Accommodation Rack (MAR)- 6 MLE
 - Waste Management Compartment- Hygiene
 - Middeck Lockers: Single, Double
 - Trays: single, double
 - Orbiter CTB's: single, Half CTB's
 - Middeck Aft (Ditch)/Ext. A/L Bags (5 MLE/10 MLE)
 - (ISS Double, Triple CTB's, MO2, MO3)
 - Aft Flight stowage containers, volumes (A16 and A17)
 - External Airlock installation of two EMU's

Evolution of Orbiter Crew Compartment Stowage volume

Volume Name	First Flight	Stowage volume
MA9N Stwg. Bags (3)	STS-44 (11/91)	1.50 MLE
Middeck Accommodations Rack (MAR)	STS-49 (5/92)	6.00 MLE
Lockers MA9D / MA16D	STS-49 (5/92)	2.00 MLE
Extended Volume B (N/A on OV-103) approx.	STS-49 (5/92)	4.00 MLE
Volume D (N/A on OV-103 or with RCRS)	STS-49 (5/92)	4.00 MLE
EDO LiOH Box (available only with RCRS)	STS-50 (6/92)	3.50 MLE
Aft Flight Deck Stwg. Cont.s (CCCD concept)	STS-50 (6/92)	0.75 MLE
Volume 3B	STS-58 (10/93)	2.00 MLE
Internal A/L Ceiling Bag	STS-62 (2/94)	4.00 MLE
Seat 6/7 Stwg. Bag	STS-74 (11/95)	3.00 MLE
ODS Stwg. Bag	STS-76 (3/96)	5.00 MLE
Airlock out MDK Stwg. Bags (OV-103,104,105)	STS-82 (2/97)	40.00 MLE
Lt. Wt. MAR	STS-96 (5/99)	N/A
Lt. WT. Lockers	STS-103 (12/99)	N/A
Total volume increase	(151.5 cu. ft.)	75.75 MLE

¹ MLE equals approximately 2 ft³

Crew Compartment Photos

Volume B and EDO version Vol B
Fits curvature of Orbiter wall for
addition ascent on-orbit stowage volume only

Under Floor Volumes

Volume F (4 MLE) Wet Trash

Volume G Contingency Hygiene

Middeck Lockers and Trays

Middeck Aft Lockers

Double MDK Locker Tray Approx. net 0.8 ft3

MA9N bags- 3-stowage bags to fit curvature of Orbiter STBD wall 1/2 MLE ea.

Middeck Forward Lockers Lt. Wt. MAR, Galley, Lockers, Payloads, seats

Post Landing View- Aft Middeck Stowage Bags Crew re-packed on-orbit

2-5 MLE Bags STBD FL and 2-5 MLE Bags Port FL

8 Total 5 MLE bags available in the Middeck Aft

Miscellaneous Middeck Stowage

Middeck Retention Net
On-Orbit stowage and
limited return stowage
Looking Forward STBD

Dry Trash Bags For on-orbit use only

EMU stowage in the Middeck

Sleep restraints, Ergometer
Shoe Bag
Middeck air ducts
Looking STBD 12

Aft Flight Deck L10 Stowage Containers 3/4 MLE each

Miscellaneous Stowage

WMC
Aft wall and Port wall stowage

Volume 3 B Approx. 4 MLE

On-Orbit Stowage/Habitability

Orbiter Middeck looking STBD/FWD

Orbiter Middeck looking Aft at 576 bulkhead hatch

Orbiter Middeck looking FWD/STBD

14

On-Orbit cable routing-Crew situational awareness

Orbiter AFD looking STBD STS-116 left STS-112 right

On-Orbit Single Logistics Module STS-116/13A.1

ISS MO3 Bag- approx 10 MLE

Launch/Return Middeck Configuration
Advanced Crew Escape Suits (ACES)
Provides O2/COMM and Individual Cooling (water)

Orbiter Vertical Installations at the Pad Stowage considerations for Vertical launch vs. Horizontal for landing

Emergency Egress Net/Closeout, Av. Bay 3A MDK Lockers, Escape Pole

MA9N bags, Av. Bay 3A MDK Lockers, GSE platform

Misc. hardware stowage

Typical CTB packing
designed by the
Crew Compartment Integration Team
for transfer to ISS
Mini Cell, Pyrell with NOMEX cover

5 MLE Bag with EMU LTA's

IELK (Soyuz Seat Liners)
Crew Rotation
5 MLE bag each

Translation fit-checks between Orbiter middeck-Ext. A/L- ISS PMA

Middeck looking forward at MF43C/E PGBA Dbl. Size Middeck payload on STS-113/11A Transferred from ISS to Orbiter

Considerations for avionics bay Middeck Locker interface structure movement.

Pressure Vessel "oil canning"

Ground vs On-Orbit vs 10.2 for EVA's

Questions/Answers